Spontaneous curvature as a regulator of the size of virus capsids.
نویسندگان
چکیده
We investigate the physical reasons underlying the high monodispersity of empty virus capsids assembled in thermodynamical equilibrium in conditions of favorable pH and ionic strength. We propose that the high fidelity of the assembly results from the effective spontaneous curvature of the viral protein assemblies and the corresponding bending rigidity that penalizes curvatures which are larger and smaller from the spontaneous one. On the example of hepatitis B virus, which has been thoroughly studied experimentally in the context of interest to us, we estimate the magnitude of bending rigidity that is needed to suppress the appearance of aberrant capsid structures (approximately 60k(B)T). Our approach also demonstrates that the aberrant capsids that can be classified within the Caspar-Klug framework are in most circumstances likely to be smaller from the regular ones, in agreement with the experimental findings.
منابع مشابه
Irreversible growth model for virus capsid assembly.
We model the spontaneous assembly of a capsid (a virus' closed outer shell) from many copies of identical units, using entirely irreversible steps and only information local to the growing edge. Our model is formulated in terms of (i) an elastic Hamiltonian with stretching and bending stiffness and a spontaneous curvature, and (ii) a set of rate constants for the addition of new units or bonds....
متن کاملAn irreversible growth model for virus capsid assembly
We model the spontaneous assembly of a capsid (a virus’ closed outer shell) from many copies of identical units, using entirely irreversible steps and only information local to the growing edge. Our model is formulated in terms of (i) an elastic Hamiltonian with stretching and bending stiffness and a spontaneous curvature, and (ii) a set of rate constants for addition of new units or bonds. An ...
متن کاملElasticity theory and shape transitions of viral shells.
Recently, continuum elasticity theory has been applied to explain the shape transition of icosahedral viral capsids--single-protein-thick crystalline shells--from spherical to "buckled" or faceted as their radius increases through a critical value determined by the competition between stretching and bending energies of a closed two-dimensional (2D) elastic network. In the present work we genera...
متن کاملMechanisms of size control and polymorphism in viral capsid assembly.
We simulate the assembly dynamics of icosahedral capsids from subunits that interconvert between different conformations (or quasi-equivalent states). The simulations identify mechanisms by which subunits form empty capsids with only one morphology but adaptively assemble into different icosahedral morphologies around nanoparticle cargoes with varying sizes, as seen in recent experiments with b...
متن کاملCurvature Concentrations on the HIV-1 Capsid
It is known that the retrovirus capsids possess a fullerene-like structure. These caged polyhedral arrangements are built entirely fromhexagons and exactly 12 pentagons according to the Euler theorem. Viral capsids are composed of capsid proteins, which create the hexagon and pentagon shapes by groups of six (hexamer) and five (pentamer) proteins. Different distributions of these 12 pentamers r...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical review. E, Statistical, nonlinear, and soft matter physics
دوره 80 2 Pt 1 شماره
صفحات -
تاریخ انتشار 2009